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SUMMARY

Wall slip is often observed in a highly sheared �uid �lm in a solid gap. This makes a di�culty in
mathematical analysis for the hydrodynamic e�ect because �uid velocity at the liquid–solid interfaces is
not known a priori. If the gap has a convergent–divergent wedge, a free boundary pressure condition,
i.e. Reynolds pressure boundary condition, is usually used in the outlet zone in numerical solution.
This paper, based on �nite element method and parametric quadratic programming technique, gives
a numerical solution technique for a coupled boundary non-linearity of wall slip and free boundary
pressure condition. It is found that the numerical error decreases with the number of elements in a
negative power law having an index larger than 2. Our method does not need an iterative process
and can simultaneously gives rise to �uid �lm pressure distribution, wall slip velocity and surface
shear stress. Wall slip always decreases the hydrodynamic pressure. Large wall slip even causes a null
hydrodynamic pressure in a pure sliding solid gap. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid mechanics is one of the oldest and most useful basic sciences in engineering applications.
For hundreds of years it has relied on the assumption that no slip occurs at the interface of
liquid and solid, i.e. no relative motion exists between the liquid molecules adjacent to the
solid and the solid surface. This is the so-called no-slip boundary condition used in many
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textbooks of �uid mechanics and is applied successfully to many engineering areas. However,
is the no-slip boundary condition always correct and reliable? The answer is no. In fact, this
success cannot re�ect the accuracy of the boundary condition but may re�ect the insensitivity
of an experiment to the partial-slip boundary condition, as stated by Craig et al. [1].
During recent years it has been found that wall slip (or boundary slip) often occurs in the

�ow of a polymer melt [2, 3]. More recently, many experiments observed that wall slip of
a liquid occurs not only at a poorly wetting surface [1, 4–7], but also in a wetting surface
[8–10]. Although many possible mechanisms for wall slip have been proposed, the experi-
mental manifestation of wall slip is the existence of a critical or limiting wall-shear stress.
When the surface shear stress is below the limiting shear stress no slip occurs. When the
surface shear stress reaches the limiting value, however, a slip occurs. In lubrication mechan-
ics, if the lubricant has a limiting shear yield stress, for example a viscoplastic �uid [11, 12],
wall slip will occur at wall–lubricant interfaces when the wall shear stress is su�ciently high.
Wu et al. [13, 14] found that a hydrodynamic failure may happen for a slider bearing lubri-
cated with a viscoplastic �uid at a high shear rate.
In numerical analysis of a wall slip problem, the wall slip cannot be known a priori. This

makes for di�culty in the numerical process, especially when wall slip and free boundary
pressure condition are coupled together. Stahl and Jacobson [15], using a di�erence method,
gave a full numerical solution for elastohydrodynamic lubrication of line contact. Huang
et al. [16] and Spikes [17] analysed wall slip occurring at a slider bearing also using a
di�erence method. In all the numerical analyses of di�erence methods, several possibilities
of wall slip have to be listed. In the numerical solution process, an iterative process has to
be used and often has problems converging to a solution [15]. Strozzi [18] gave an early
concept to analyse one wall slip using a complementarity method. This method needs not an
iterative process, but it dealt with only a very special wall slip (known inlet volume �ow and
the slip occurring at only one surface) and cannot be used to address engineering applica-
tions. This paper presents a general numerical method for the numerical solution of wall slip
and free boundary pressure condition using a �nite element method together with a quadratic
programming technique. The wall slip can take place at one or both of the solid surfaces.

2. MATHEMATICAL ANALYSIS METHOD

2.1. Control equations for wall slip

Based on parametric variational principle described in Reference [14] for a viscoplastic lubri-
cation of a slider bearing, the wall slips coupled with free boundary pressure condition are
studied in the present paper. The lubricant velocities at surfaces a and b, �ua and �ub, can be
expressed by (see Figure 1)

�u� = u� + us� (� = a; b) (1)

where ua and ub denote the velocities of solid surfaces a and b, respectively, and usa and u
s
b are

the corresponding wall slip velocities. In the lubrication mechanics of �uid �lm, it is assumed
that the �uid �lm thickness in the studied domain is so small than the size of the lubricated
surface that the �uid velocity component in y direction can be neglected [19]. Thus the �uid
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Figure 1. Schematic of �uid �ow in a thin gap between a roller and a plane.

absolute velocity equals approximately its component in x direction. If us�¿0 (� = a; b) wall
slip goes in the positive x direction. Otherwise it goes in the negative x direction.
Using the yield function concept in elasto-plastic structural analysis, the slip functions for

wall slip can be written as

f(��; p) = |��| − �L�60; (� = a; b) (2)

where � is the shear stress at solid–lubricant interface, p the �lm pressure, �L the limiting
shear stress at the interface, and the subscript � denotes the surface a or b (see Figure 1).
The limiting shear stress is given by Bair and Winer [11] as

�L� = �0� + k�p; (� = a; b) (3)

where �0� is the initial shear strength when the �lm pressure equals zero, and k� is a constant
of proportionality. Consequently, the slip function (2) can be rewritten as

f(1)� = �� − (�0� + k�p)60; (� = a; b) (4a)

f(2)� =−�� − (�0� + k�p)60; (� = a; b) (4b)

The sign of the wall slip velocity has the following relationships with surface shear stress:
sign(usa) = −sign(�a) and sign(usb)= sign(�b). Consequently, the slip velocities can be given by

usa = {−1; 1}{�(1)a ; �(2)a }T (5a)

usb = {1;−1}{�(1)b ; �(2)b }T (5b)

where �(1)a and �(2)a denote, respectively, the absolute values of wall slip velocities in negative
x and positive x directions at surface a, but �(1)b and �(2)b denote, respectively, the absolute
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values of wall slip velocities in positive x and negative x directions at surface b. They have
the relationship: �(1)� • �(2)� = 0, �(i)� ¿0 (i = 1; 2; � = a; b). The shear stresses at surfaces a
and b can be written as

�a =
h
2
@p
@x
+
ua − ub
h

�+
usa − usb
h

� (6a)

�b =−h
2
@p
@x
+
ua − ub
h

�+
usa − usb
h

� (6b)

where h is the �uid �lm thickness and � the �uid viscosity. Substituting Equations (6a),
(6b) and (5a), (5b) into Equations (4a) and (4b), the slip control equations can be written
as

f(i)� (p; @p=@x; h; �a; �b) + �
(i)
� = 0 (7a)

�(i)� · �(i)� = 0; �(i)� ¿0; �(i)� ¿ 0 (i = 1; 2; � = a; b) (7b)

where �(i)� are the slack variables complementary to the control variables �(i)� . If f
(i)
� ¡0, then

�(i)� = 0 (i = 1; 2; � = a; b), which indicates no wall slip occurs. If f(i)� = 0, then �(i)� ¿0
(i = 1; 2; � = a; b), which indicates that a wall slip occurs. No case of f(i)� ¿0 will take
place.

2.2. Finite element formulation

Assume that the moving velocity of the plane is along ox-axis (see Figure 1), the Reynolds
equation with wall slip for constant viscosity and isothermal lubrication is [19]

@
@x

(
h3

12�
@p
@x

)
− 1
2
@
@x
[h(ua + ub + usa + u

s
b)] = 0 (8)

The corresponding variational functional is [14, 20]

J (p) =
∫ xout

xin

[
h3

24�

(
@p
@x

)2
− h
2
(ua + ub + u

s
a + u

s
b)
@p
@x

]
dx + qsps (9)

where xin and xout are the locations of the inlet and outlet coordinates of the studied domain of
�uid �lm, respectively, qs the known boundary volume �ow (negative when it �ows into the
studied �uid domain and positive when it �ows out of the domain), and ps the corresponding
unknown �lm pressure. It is assumed that the lubricated region is divided into m �nite elements
with n nodes. Also it is assumed that �(i)� , which characterizes slip state, is constant in an
element.
Because �uid cannot resist large tensile stress, it is generally assumed that a negative �lm

pressure is impossible. In other words, the variational functional (9) should have p¿0 as an
additional constraint to Equations (7a) and (7b). Consequently, the problem mentioned above
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can be summarized as the following discrete optimization problem:

Min J (p) = 1
2{p}[K]{p} − {p}T([B]({ua}+ {ub}) + [�]{�} − {q})− {�}T{p} (10a)

s:t: [C]{p} − [M ]{�}+ {d} − {�} = 0 (10b)

�j�j =0; �j¿0; �j¿0; (j = 1; 2; : : : : : : ; m− 1; m) (10c)

�jpj =0; pj¿0; �j¿0; (j = 1; 2; : : : : : : ; n− 1; n) (10d)

where {�} is the Lagrangian multiplier vector. Letting �J (p)=�p = 0 in Equation (10a) and
making use of Equations (10b)–(10d), the following complementary problem is obtained:

[K]{p} − ([B]({ua}+ {ub}) + [�]{�} − {q})− {�} = 0 (11a)

[C]{p} − [M ]{�}+ {d} − {�} = 0 (11b)

�j�j =0; �j¿0; �j¿0; (j = 1; 2; : : : : : : ; m− 1; m) (11c)

�jpj =0; pj¿0; �j¿0; (j = 1; 2; : : : : : : ; n− 1; n) (11d)

The problem described by Equations (11a)–(11d) can be solved by many methods. In the
present paper the Lemke method is used [21]. After we get the solution, the Reynolds boundary
condition can be automatically satis�ed.

3. FLUID FLOW IN A SLIDING GAP WITH ONE WALL SLIP

In order to show the feasibility and reliability of our method, �rst we analysed the same
example as given by Strozzi [18]. Strozzi studied one wall slip problem of a slider bearing
with a constant inlet volume �ow. In the slider bearing shown in Figure 2(a), the upper
surface is stationary, but the lower surface moves at a speed ub = 0:4m=s. The following data
are used: hin = 2 mm, hout = 1 mm, B = 1 m, � = 0:125 Pa s, ka = kb = 0, which are all the
same as those used in Reference [18]. The boundary conditions are p = 0 at x = B and the
inlet volume �ow per unit width qin = 0:266667× 10−3 m3=s at x = 0, which is the volume
in�ow of an otherwise similar slider bearing, but in the absence of slippage and with null
boundary pressures. Suppose that �0a��0b, slip can occur only at the lower surface. Therefore,
the slip control equations at surface a can be removed. Now let us analyse the slip problems
when �0b = 30; 40 and 50 Pa, respectively.
The computed results are in good agreement with those given in Reference [18], see

Figures 2(a)–(c). Two hundred linear elements (201 nodes) are used in this calculation while
100 nodes were used in the di�erence solution of Strozzi [18]. When �0b = 50 Pa, no wall
slip occurs. When �0b = 40 Pa, partial slip takes place on over 61% of the lower surface in
the left side. When �0b = 30 Pa, over 77% of the lower surface has wall slip. With decrease
in the limiting shear stress, larger and larger a wall slip takes place on the left side of the
lower surface, where the surface shear stress reaches its limiting value (see Figure 2(b)). The
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Figure 2. One wall slip analysis with a constant inlet volume �ow (qin = 0:266667 m3=s) boundary
condition at x = 0 and p = 0 at x = B for three surface limiting shear stresses �0b = 50; 40 and 30 Pa:
(a) �uid pressure distribution; (b) shear stress of �uid at lower surface b; and (c) �uid velocity at lower
surface. The open symbols are predicted by Strozzi [18]: � �0b = 50Pa, � �0b = 40Pa, � �0b = 30Pa.

maximum amplitude of wall slip occurs at the inlet position (h = hin, see Figure 2(c)). All
the slips on the lower surface occur in the negative x direction.
In order to show accuracy of the present method, Figure 3 gives the computation error

with an increase in the number of uniform �nite elements when the limiting shear stress of
lower surface �0b = 40Pa. The computation value at m = 800 is considered as the true value.
Computation error for each parameter is de�ned as the relative error of the calculated value
and that obtained when m = 800. For example, the computation error for load support w is
de�ned as werr = |w800 − wm|=w800, where the subscript 800 and m denote, respectively, the
number of elements to be 800 and m. It can be found that, with an increase in the number
of elements, the computation errors decrease in a manner of negative power. For the �uid
load support w, its computational error gives approximately werr = 7=m2:2. When the number
of elements m = 100, the computed error for w is decreased to less than 0.03%. It should be
pointed out that this numerical example has not yet a true analytical solution. Only Strozzi’s
numerical result is available to compare. Our numerical results show that after the number
of elements is greater than 500, the computed �uid load support capacity changes less than
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Figure 3. Computational errors for the indicated parameters, where w is the �uid load support, f
the friction force at lower surface, pin the inlet pressure, or the pressure at the �rst node, pmax the
maximum pressure, and m the number of elements. The subscript err denotes the computational error

for the corresponding parameter.

Figure 4. One wall slip analyses with null pressure boundary conditions for several limiting shear stresses
at lower surface: (a) �uid pressure distribution; (b) �uid velocity at lower surface; and (c) ratios of
�uid load support and volume �ow with and without slip. m=200, ub=0:4 m=s, ua=0,�=0:125 Pa s,

hin = 2 mm, hout = 1 mm, B = 1 m.
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0.001%. However, our numerical solution for the load support capacity in the case of no slip
gives rise to an error of 0.004% compared with the analytical solution (actual solution) when
the number of elements m = 200.
Figure 4 gives the wall slip analysis with null pressure boundary conditions (p = 0 at x = 0

and p = 0 at x = B) for several limiting shear stresses at the lower surface. As contrasted with
those shown in Figure 2, the �uid pressure, �uid �ow volume and the load support all decrease
with the surface limiting shear stress. After the surface limiting shear stress �0b630 Pa, slip
occurs over all of the lower surface. It can be seen that wall slip dramatically reduces the
hydrodynamic load support capacity of a �uid �lm �owing at a wedge gap. The volume �ow
past the sliding gap is also decreased with the wall slip occurring at the moving surface.

4. FLUID FLOW IN A CONVERGENT–DIVERGENT WEDGE

Now we study the hydrodynamic response of �uid con�ned between two curved solid surfaces
with relative motion. Any two curved surfaces with curvature radii R1 and R2 in a non-
conforming contact can be approximated by a curved surface with curvature R = R1R2=
(R1 + R2) and a plane, as shown in Figure 1. The following dimensionless parameters are
used: P = pR=(�U ), T0� = �0�R=(�U ), TL� = �L�R=(�U ), T� = ��R=(�U ), Q = q=(UR),
W = w=(�U ), where U = ua + ub, Ua = ua=U , Ub = ub=U , � = a; b. The �uid �lm thickness,
as shown in Figure 1, can be written approximately as [19]

h(x) = h0 + x2=2R (12)

where h0 is the minimum �lm thickness at x = 0 and R is the roller radius.
In the numerical simulations the following parameters are used: h0=R=10−5, xin=R=− 0:2,

xout=R=0:01. First we study the wall slip occurring at a pure sliding motion (Ua=1; Ub=0). It is
assumed that the lower surface (stationary) has a surface limiting shear strength (T0b=2× 105,
kb=0) high enough to hold the no-slip condition. Pressure boundary condition at inlet is p = 0
at x=R = −0:2. At outlet it is a free boundary pressure condition (Reynolds pressure boundary
condition), i.e. p = 0 and @p=@x = 0 at an unknown position somewhere. The dimensionless
limiting shear stress at the upper surface (roller surface) is taken as T0a = 2× 104, so that a
wall slip occurs. This is a combination of wall slip and free boundary pressure condition. The
�uid pressure and wall slip in the thin �uid �lm con�ned between curved surfaces concentrates
mostly in the left side of the contact centre. In order to improve the numerical accuracy, 200
non-uniform meshes are used. Small sizes of meshes are employed in the small left zone
of the centre. Figure 5(a) gives the �uid �lm pressure distribution for several values of ka
when the solid surfaces have a pure sliding motion. It can be found that the hydrodynamic
pressure concentrates mostly near the small centre zone and we need only to study a small
domain of the �uid �lm. This supports again the assumption of velocity component made in
Section 2.1 and the �uid �lm thickness approximation of Equation (12). Our numerical method
needs not an iterative process for such a complex non-linear problem. Reynolds pressure
boundary condition was automatically satis�ed together with the solution of �uid pressure,
wall slip velocity and surface shear stress. Evident is the dramatic drop of �uid pressure due
to the large wall slip at small values of ka. Changes of the �uid �ow velocities at upper
surface caused by wall slip are shown in Figure 5(b). Wall slip velocities at the centre zone
for small values of ka60:001 are so high that the �uid �ow velocities at upper surface is
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Figure 5. Wall slip analyses at a pure sliding gap given in dimensionless param-
eters: (a) �uid �lm pressure distribution for several values of ka; (b) changes
of the �uid velocities at upper surface caused by wall slip; (c) shear stress of
�uid �lm at upper surface; (d) surface limiting shear stress at upper surface;
and (e) the surface shear stresses at lower surface. h0=R = 10−5, Ua = 1,

Ub = 0, T0b = 2× 105, kb = 0.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:131–145



140 C. W. WU AND H. X. SUN

decreased by about 60–75%. The shear stress and limiting shear stress of �uid �lm at upper
surface are given in Figures 5(c) and (d), respectively. Here we can see more clearly how
wall slip to develop at upper surface. Wall slip �rst to be developed in the large pressure
gradient region, where a high surface shear stress is easily generated. No wall slip occurs at
the regime where the surface shear stress is below its critical value. Figure 5(e) shows the
surface shear stress at lower surface, which is smaller than its limiting shear stress. Therefore,
no slip occurs at lower surface. Similarly, the surface shear stresses at lower surface after
ka60:001 are very small compared with that of ka = 0:01.
Figure 6 gives the numerical results of slip analysis when the two surfaces with a pure

sliding motion have the same surface limiting shear stress, i.e. ua¿0, ub = 0, T0a = T0b,
and ka = kb. Here we keep ka = kb = 0:01 and investigate the e�ect of the dimensionless
initial limiting shear stress, T0a(T0b), on the wall slip and hydrodynamics of the �uid �lm.
If T0a = T0b = 105, no slip occurs at any surface and the pressure distribution is the same
as that predicted by the classical Reynolds theory. However, if T0a = T0b = 104 and 5× 103,
a slip occurs at lower surface (stationary) in the outlet zone, but no slip exhibits at upper
surface (moving). When T0a = T0b = 103, slips occur at both surfaces. The �uid pressure
decreases dramatically with an increase in wall slip. Finally, the hydrodynamic e�ect totally
disappears.
Figure 7 gives the numerical results of slip analysis when the two surfaces with a pure

rolling motion (ua = ub) have the same surface limiting shear stress. The hydrodynamic e�ect
in a pure rolling condition is stronger than that in a pure sliding condition as shown in
Figure 6 if the sum of ua and ub is kept as a constant. A considerable hydrodynamic response
still exhibits even when the surface dimensionless initial shear strength T0a(T0b) is very small
(see Figure 7(a)). Only when T0a = T0b = 0, does the hydrodynamic e�ect totally disappear.
The �uid velocity at the liquid–solid interface is not a constant but varies with surface property
and geometry position (see Figure 7(b)). Comparing Figure 7 with Figure 6, we can see that
hydrodynamic response in a pure rolling motion is much better than that in a pure sliding
motion in the case of wall slip. This can explain why a scu�ng damage may be easy to occur

Figure 6. Numerical results of slip analysis for two surfaces in a pure sliding motion given in dimension-
less parameters: (a) hydrodynamic �uid pressure; and (b) �uid velocities at solid surfaces. h0=R = 10−5,

Ua = 1, Ub = 0, ka = kb = 0:01, T0a = T0b = T0.
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Figure 7. Numerical results of slip analysis for two surfaces in a pure rolling motion given in dimension-
less parameters: (a) hydrodynamic �uid pressure; and (b) �uid velocities at solid surfaces ( �Ua = �Ub).

h0=R = 10−5, ua = ub; ka = kb = 0:01; T0a = T0b = T0.

in a pure sliding lubricated contact pair having same material surfaces. But scu�ng does not
so easily occur in a pure rolling system.

5. DISCUSSIONS

Interfacial limiting shear stress depends on surface roughness, wettability of the surface,
�uid viscosity, etc. [6–8, 22]. It can range from the order of 0.1 Pa to the order of MPa
[11, 12, 22, 23]. Usually, high viscosity �uid and poor surface wettability easily give rise to a
large wall slip. The roughness e�ect on wall slip is still unclear so far. Zhu and Granick [7]
showed that surface nanoroughness reduces wall slip and �nally the no-slip boundary condi-
tion holds. But Bonaccurso et al. [8] reported that surface nanoroughness increases the wall
slip. In the present paper, we did not consider the roughness e�ect. The limiting shear stresses
used from Figures 2–4 are just for the purpose of comparison with Strozzi’s numerical re-
sults [18]. The values of the dimensionless limiting shear stresses used from Figures 5–7 are
based on the existing experimental data. For example, if we take R = 0:1 m, U = 1 m=s and
� = 0:01 Pa s, the limiting shear stress ranges from 1 to 104 Pa, giving the corresponding
dimensionless limiting shear stress, T0, ranging from 10 to 105.
In a special �uid �lm studied, the possible slip direction somewhere may be determined

previously. In this way the number of control equations described in Equation (7) can be
reduced greatly, i.e. the size of matrixes [C], [M] and [�] can be reduced. One of the questions
in which one is interested may be the computational time of our method. The computational
time varies greatly with the studied system and the slip zone size. For example, if we use
200 linear elements, about 10 s are needed for the numerical solution of a single wall slip
problem using all the 200 slip control equations at surface b, but about 20 s are needed for
wall slip analysis of both surfaces using all the 400 slip control equations, including the
input and output process (Pentium IV, 2.8GHz, 512M memory). In fact, the slip control
equations employed can be reduced according to the possible slip directions. Therefore, the
computational time can be further reduced.
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6. SUMMARY AND CONCLUSIONS

When a �uid �ows in a thin gap between two solid surfaces with relative motion, high hy-
drodynamic pressure and shear rate may be developed in the �uid �lm. Wall slip is often
observed in such a high sheared �uid �lm, for example, in thin �lm lubrication, nanorheol-
ogy, micro-channel �ow and a micro–electro–mechanical-system (MEMS). Wall slip makes
a di�culty in mathematical analysis for the hydrodynamic e�ect because �uid velocity at the
liquid–solid interfaces is not known a priori. When two close solid surfaces have a relative
motion (either tangential or normal direction or both), the �uid con�ned between them will
give a hydrodynamic pressure. If the gap con�ning �uid has a convergent–divergent wedge
and the solid surfaces have a relative tangential motion, Reynolds pressure boundary condi-
tion, a typical free boundary pressure condition, is usually used in the outlet zone in numerical
solution. One of the most widely used numerical methods to deal with such a free boundary
condition is an iterative solution technique.
There are only a few numerical analyses reported so far for wall slip problem based on

di�erence method and iterative solution process. The iterative solution is a tedious process and
often has problems converging to a solution with a satisfactory accuracy. For example, the
iterative process sometimes is diverging but not converging to a solution. This paper, based
on �nite element method and parametric quadratic programming technique, gives a numerical
solution technique for coupled boundary non-linearity of wall slip and free boundary pressure
condition. Our method does not need an iterative process and can simultaneously give rise to
�uid pressure distribution, wall slip velocity and surface shear stress. The Reynolds pressure
boundary condition can be automatically satis�ed in the solution process. It is found that
the numerical error decreases with number of elements in a negative power law having an
index larger than 2. Numerical solutions show that wall slip �rst to be developed in the large
pressure gradient region, where a high surface shear stress is easily generated, and then the
slip region is enlarged with the increase in the relative sliding velocity of solid surfaces. Wall
slip dramatically a�ects generation of the hydrodynamic pressure and always decreases the
hydrodynamic pressure. Large wall slip even causes a null hydrodynamic pressure in a pure
sliding gap. A better hydrodynamic response is given in a pure rolling motion gap than in a
pure sliding gap in the case of wall slip.

NOMENCLATURE

Symbols

Ae length of element
B width of slider bearing
f slip function
h �uid �lm thickness
h0 minimum �uid �lm thickness
J (p) functional symbol
k proportional constant
m number of elements
n number of nodes
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p �lm pressure
ps �lm pressure corresponding to qs
qs known boundary volume �ow
q volume �ow
R roller radius
� shear stress
�L limiting shear stress
�0 initial shear strength
� �uid viscosity
u �uid velocity
x coordinate
y ordinate
�ua; �ub �uid velocities at surfaces a and b
ua; ub velocities of surfaces a and b
usa; u

s
b slip velocities at surfaces a and b

U ua + ub
w �uid �lm load support
�(i)� control variable or absolute wall slip velocity
V (i)� slack variable
[ ] matrix symbol
{ } column or row vector symbol

Dimensionless parameters

P pR=(�U )
T0� �0�R=(�U )
TL� �L�R=(�U )
T� ��R=(�U )
W w=(�U )
Q q=(RU )
U� u�=U
�U� �u�=U

Sub- and Superscripts

� a, b indicating surface a and b
in, out inlet and outlet positions of �uid �lm
e the eth element
i 1, 2
j 1; 2; : : : : : : ; m; or = 1; 2; : : : : : : ; n

Matrixes and Vectors

N interpolation function matrix, N = [(xe+1 − x)=(xe+1 − xe), (x − xe)=
(xe+1 − xe)] (e = 1; 2; 3; : : : ; m) if a linear element is employed

uae, ube solid surface node velocity vectors at the eth element
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f� {f(1)� ; f(2)� }T

[K]
m∑
e=1

∫
Ae

h3

12�
@N
@x

T @N
@x
dx

[B]
m∑
e=1

∫
Ae

h
2
@NT

@x
N dx

[�]
m∑
e=1

∫
Ae

h
2

[
@N
@x

T

{−1; 1; 1;−1}
]
dx

[C]
m∑
e=1

1
Ae

∫
Ae

[
h
2

{
−@f

T
a

@�a
;
@fTb
@�b

}T @N
@x
+ {ka; ka; kb; kb}TN

]
dx

[M ]
m∑
e=1

1
Ae

∫
Ae

�
h

{
@fTa
@�a
;
@fTb
@�b

}T
{−1; 1; 1;−1} dx

{d}
m∑
e=1

1
Ae

∫
Ae

(
{�0a; �0a; �0b; �0b}T − �

h

{
@fTa
@�a
;
@fTb
@�b

}T
N{uae − ube}

)
dx

{p} {p1; p2; p3; : : : ; pn}T
{q} {−qin; 0; 0; : : : ; 0}T if the volume �ow is known at the inlet
{q} {0; 0; : : : ; 0; qout}T if the volume �ow is known at the outlet
{q} {0; 0; 0; : : : ; 0}T if no boundary volume �ow condition is given
{�} {�(1)a1 ; �(2)a1 ; �(1)b1 ; �(2)b1 ; : : : ; �(1)am ; �(2)am ; �(1)bm ; �(2)bm}T
{�} {�(1)a1 ; �(2)a1 ; �(1)b1 ; �(2)b1 ; : : : ; �(1)am; �(2)am; �(1)bm; �(2)bm}T
{�} {�(1)a1 ; �(2)a1 ; �(1)b1 ; �(2)b1 ; : : : ; �(1)an ; �(2)an ; �(1)bn ; �(2)bn }T
{ua} {ua1 ua2; : : : ; uan}T
{ub} {ub1 ub2; : : : ; ubn}T
m∑
e=1

assembly symbol
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